The Kähler Ricci Flow on Fano Surfaces (I)

نویسندگان

  • Xiuxiong Chen
  • Bing Wang
چکیده

Suppose {(M, g(t)), 0 ≤ t <∞} is a Kähler Ricci flow solution on a Fano surface. If |Rm| is not uniformly bounded along this flow, we can blowup at the maximal curvature points to obtain a limit complete Riemannian manifold X. We show that X must have certain topological and geometric properties. Using these properties, we are able to prove that |Rm| is uniformly bounded along every Kähler Ricci flow on toric Fano surface, whose initial metric has toric symmetry. In particular, such a Kähler Ricci flow must converge to a Kähler Ricci soliton metric. Therefore we give a new Ricci flow proof of the existence of Kähler Ricci soliton metrics on toric Fano surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kähler Ricci flow on Fano manfiolds(I)

We study the evolution of anticanonical line bundles along the Kähler Ricci flow. We show that under some conditions, the convergence of Kähler Ricci flow is determined by the properties of the anticanonical divisors of M . As examples, the Kähler Ricci flow on M converges when M is a Fano surface and c 1 (M) = 1 or c 1 (M) = 3. Combined with the work in [CW1] and [CW2], this gives a Ricci flow...

متن کامل

Remarks on Kähler Ricci Flow

We study some estimates along the Kähler Ricci flow on Fano manifolds. Using these estimates, we show the convergence of Kähler Ricci flow directly if the α-invariant of the canonical class is greater than n n+1 . Applying these convergence theorems, we can give a Kähler Ricci flow proof of Calabi conjecture on such Fano manifolds. In particular, the existence of KE metrics on a lot of Fano sur...

متن کامل

Kähler-ricci Flow on Stable Fano Manifolds

We study the Kähler-Ricci flow on Fano manifolds. We show that if the curvature is bounded along the flow and if the manifold is K-polystable and asymptotically Chow semistable, then the flow converges exponentially fast to a Kähler-Einstein metric.

متن کامل

Kähler-Ricci flow, Kähler-Einstein metric, and K-stability

We prove the existence of Kähler-Einstein metric on a K-stable Fano manifold using the recent compactness result on Kähler-Ricci flows. The key ingredient is an algebro-geometric description of the asymptotic behavior of Kähler-Ricci flow on Fano manifolds. This is in turn based on a general finite dimensional discussion, which is interesting in its own and could potentially apply to other prob...

متن کامل

Multiplier ideal sheaves and the Kähler-Ricci flow on toric Fano manifolds with large symmetry

The purpose of this paper is to calculate the support of the multiplier ideal sheaves derived from the Kähler-Ricci flow on certain toric Fano manifolds with large symmetry. The early idea of this paper has already been in Appendix of [11].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010